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The “data deluge” is an interesting metaphor (fig. 7.1). Widely used since 
the 1990s, it attempts to capture the process resulting in the current “data 
flood,” the immense amount of digital data about nature, people, and 
societies. But one of the most puzzling connotations of this metaphor is 
that data, like rain in the most famous deluge of all, seems to pour down 
naturally, pulled only by the laws of gravity, submerging the earth. All those 
who have paid close attention to archives and databases have however seen 
the data deluge in a very different light. Data did not fall naturally upon 
them. Data was something that had to be actively sought out. Creating a 
flow of data from source toward repositories was far more challenging than 
just waiting for rain to fall from the heavens. This chapter aims to under-
stand how such data flows were created and sustained in the late twentieth- 
century experimental life sciences. It argues that the data deluge was not 
simply the product of technological revolutions in the modes of data 
production and a general increase in the amount of data being produced 
(“big data”). Rather, these developments resulted from two historically 
significant transformations: a redefinition of what counts as “data” and 
also of the obligations attached to possessing “data.” These changes deeply 
affected how data came to be collected. But they did not upset the existing 
moral economy of the experimental sciences, based on individual author-
ship, credit, and rewards. Instead, individual and collective interests aligned 
in new ways. This chapter addresses a crucial aspect of the sciences of the 
archives: how the archives became filled with data available for public use.1

SEVEN

The “Data Deluge”: Turning Private Data into Public Archives

Bruno J. Strasser
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The literature about “big data” is growing almost as fast as “big data” 
itself. The popular Big Data: A Revolution That Will Transform How We Live, 
Work, and Think (2013), by Internet analyst Viktor Mayer- Schönberger and 
media commentator Kenneth Cukier, or the more scholarly Reinventing Dis-
covery: The New Era of Networked Science (2012) by the physicist and writer 
Michael Nielson and Too Big to Know (2012) by the Harvard Internet scholar 

Fig. 7.1 The Economist, February 27, 2010, reported on the effects of the “data deluge” in a variety of fields, 
from the stock market to national security.
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David Weinberger contain many insights into how the availability of big 
data can change how knowledge is produced.2 But all of these authors take 
for granted that the amount of data available publicly is solely determined 
by the rate of data production. Nielson, for example, summarized the situa-
tion for genetic data: “Each time [researchers] obtained a new chunk of 
genetic data in their laboratories, they uploaded that data to a centralized 
online service such as GenBank.”3 Had these authors been less impressed 
by the growing rate in the production of data, they might have paid closer 
attention to how data was actually collected and made publicly available. 
They might also have realized that researchers did not simply “upload that 
data to a centralized online services” once they had obtained it. Indeed, the 
single most important concern among all those who have developed the 
databases and other infrastructures of big data science was how to compel 
researchers to share their data.4 In 1976, for example, the managers of the 
first international database in protein crystallography (the Protein Data 
Bank) admitted to the research community that “in spite of our recent rapid 
rate of growth . . . we are aware that the Bank lacks data.” They went on 
to “urge investigators to deposit” their data as it became available.5 Part-
ing ways with recent concern over the overabundance of data, this chapter  
focuses on the scarcity of data, examining how the data deluge, far from 
being a natural phenomenon or the result of a technological revolution, 
was achieved only slowly and in the teeth of resistance by those who envi-
sioned how publicly available big data could transform the production of 
scientific knowledge.

Under specific historical circumstances, various collections of scientific 
things and “data,” to use today’s term, have been turned into “archives,” 
making possible the development of “sciences of the archives.” Since the 
Middle Ages, the word “archives” has designated both a place and what 
it contains, namely documents about the history of a people or institu-
tion.6 Archives were established as a link between the past and the future 
with imagined uses and users (see Lorraine Daston’s introduction to this 
volume). State genealogical archives, for example, have permitted the 
authentication of family relations and patrimonial inheritance. In the sci-
ences, when things and “data” began to be collected, not only as prized 
possessions for the present, but as a resource for the future, they became 
scientific “archives.” In natural history, the term “archive” was commonly 
used to designate a collection of specimens (see David Sepkoski, chapter 2 in 
this volume) and these “scientific archives,” such as herbaria and zoological 
collections, have played an essential rôle in the production of knowledge. 
Collecting, comparing, and classifying have been key epistemic practices 
applied to the archives of natural history. By contrast, in the experimental 
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life sciences, scientific archives have been marginal, and the term “archive” 
rarely used, with the notable exception of experimental medicine, in which 
a number of journals were titled “Archiv,” constituting a public collection 
of results intended for future use (see J. Andrew Mendelsohn, chapter 3 in 
this volume). However, there seems to have been no strict equivalent in the 
rest of the experimental life sciences, in which knowledge was produced 
through new experiments, not the systematic comparison of results of 
previous ones. Only in the late twentieth century did such comparisons of 
experimental results become a common practice in the experimental life 
sciences, transforming them into “sciences of the archives,” as one might 
call them in view of how they function epistemically. Given that the ex-
perimental life sciences had rested on a very different epistemic tradition 
for most of their history, it is unsurprising that this recent transformation, 
culminating in the current data deluge, was far more laborious than current 
commentators have imagined.

COLLECTIVE COLLECTIONS

To understand the specific historical changes in data collection at the end of 
the twentieth century, it is useful to take a broader view and examine how 
things and data were collected in previous centuries and stored in scien-
tific collections and archives— almost always a collective enterprise.7 The 
sciences that relied on collections, from astronomy to zoology, have often 
involved a very wide range of participants, most of whom could be, since 
the nineteenth century, labeled as “amateurs,” in that they did not make 
a living through their collecting practices. All of the great natural history 
collections of rocks, plants, and animals were gathered with the help of 
countless amateurs, often with exceptional levels of “lay expertise” in their 
field of specialty.8 The same holds true for astronomy, in which amateurs 
were crucial, for example, to the collection of comet observations, or for 
meteorology, in which they played an essential role in the systematic recod-
ing of rare and common phenomena across large spaces.9

The extensive involvement of amateurs in the sciences of the archives 
was no historical accident. Because these sciences required the collection of 
observations and things across vast geographic expanses or even the entire 
world, they needed observers who were physically present in diverse locales. 
The great scientific expeditions could collect large amounts of observations 
and things, but only at great expense and for a limited time period. They 
could hardly compete with the long- term presence of observers around 
the globe, provided these could be trained to supply standardized observa-



Bruno J. Strasser 189

tions.10 Thanks to intimate knowledge of their immediate surroundings, 
these “resident observers” could gather observations that the “traveling 
observer” would often overlook.11

The enrollment of large numbers of amateurs in a collective research 
project depended on the possibility of providing some kind of financial, 
symbolic, or personal reward. The commodification of natural objects 
stimulated a growing market where researchers could simply buy specimens 
from plant and animal dealers, recreational hunters, and private collectors.12 
More importantly, these sciences produced knowledge based on objects— 
ferns, crystals, clouds— that were visible to the (trained) human eye and had 
long been part of a vernacular culture. In nineteenth- century England, non-
scientists could be passionate about ferns, discuss them in pubs, and hold 
them in their homes as prized cultural items, whereas for scientists these 
ferns were specimens to be named, classified, and theorized about.13 Corals 
in eighteenth- century France tell a similar story: simultaneously beautiful 
ornaments of aristocratic salons and scientific objects for naturalists.14

With the rise of the experimental sciences, especially since the late 
nineteenth century, the relationship between professional and amateurs 
changed drastically. From its origins, the laboratory was a private space, 
located in the home of an experimentalist.15 Strict control over who could 
access the laboratory was key to its epistemic function. The laboratory was 
accessible only to a select few gentlemen, not the broader public.16 As the 
laboratory came to hold increasingly complex, expensive (and sometimes 
dangerous) equipment, it became almost exclusively located in research 
institutions, thus deepening the divide between professional scientists and 
the public. In the twentieth century, a few sciences, mainly those in the 
natural history tradition, still relied extensively on amateurs, but these sci-
ences were becoming increasingly marginalized, in terms of both budgets 
and prestige, by the experimental sciences. The experimental sciences, on 
the other hand, became fully professionalized: there was no community 
of amateurs to rely on for the collection of experimental data. The produc-
tion of experimental data was a matter for professionals. This fundamental 
difference between the experimental and the naturalist sciences had deep 
consequences for data collections.

WITHHOLDING DATA

In the molecular life sciences in the 1970s and 1980s, a number of new 
technologies resulted in improved methods for determining the structure 
of macromolecules. In 1977, for example, two new methods permitted de-
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termination of DNA sequences. Combined with the wide interest in the 
biological meaning of DNA sequences, these new methods resulted in an 
exponential growth in the production of sequence data.17 In crystallogra-
phy, more powerful methods, relying on digital computers, were also devel-
oped in the 1970s, speeding up the production of crystallographic data and 
the number of solved molecular structures.18 This burgeoning store of data 
was often shared informally among researchers. It made possible a deep 
epistemic transformation in how data was used. As I have argued elsewhere, 
one of the most significant changes in the experimental sciences during 
the twentieth century was the increasing reliance on practices of produc-
ing knowledge based on collecting, computing, comparing, classifying, and 
curating large and diverse amounts of data.19 These practices, so common in 
natural history and other observational sciences, became key to the experi-
mental sciences as well. By adopting a different set of epistemic practices, 
whose potential became ever clearer starting in the 1970s, the experimental 
sciences were also confronted with new material and social challenges. But 
unlike the practitioners of natural history and other collecting sciences, 
who had long experience in resolving such problems, the experimentalists 
were at a loss to find solutions within the specific moral economies of their 
communities.20 The single most important challenge was how to collect in 
a single place and make public the massive amount of data required to feed 
these epistemic practices.

Whereas most sciences of the archives had relied on and cultivated large 
networks of professional and amateurs, the experimental sciences had sev-
ered their ties with amateurs more than a century ago and consigned them 
to the role of distant spectators.21 Thanks to the growth of the scientific 
workforce in the second half of the twentieth century, there was a much 
larger community of professionals able to contribute to a large collecting 
effort— on the condition that they could be persuaded to participate in 
this collective effort. Given a professional identity that valued individual 
achievement over collective participation, this was no simple task, espe-
cially if it implied sharing data difficult to produce and potentially rich in 
the epistemic rewards of new publications.

Since the Scientific Revolution of the sixteenth and seventeenth cen-
turies, experimental results, “data” one could say, had been treated as the  
private property of the investigator who produced and carefully guarded it 
in laboratory notebooks. Data was disclosed publicly in exchange for scien-
tific credit through oral communication in academies or publications in 
printed journals. This moral economy was still very much at work in the 
twentieth century. In 1968, American biologist James Watson revealed in 
his tell- all autobiography, The Double Helix, that he “was more aware of 
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[British crystallographer Rosalind Franklin’s] data than she realized” and 
that “Rosy, of course, did not directly give us her data.”22 The data in ques-
tion, communicated to Watson and his British collaborator Francis Crick 
though a confidential activity report, proved essential for the determina-
tion of the double helix structure of DNA. Scientists who reviewed Wat-
son’s book were almost unanimous in condemning his behavior and his 
shameless bragging about it.23 In their view, Watson robbed Franklin of her 
data and thereby of her due credit. Data belonged to individuals, not to the 
scientific community as a whole.

COLLECTING DATA

Those who attempted to set up large collections of molecular data in the 
second half of the twentieth century experienced this problem firsthand, as 
the history of the Protein Data Bank and of GenBank, two of the major data-
bases in the life sciences, make abundantly clear. The Protein Data Bank was 
set up in Brookhaven National Laboratory in 1973 to store all the existing 
data about the three- dimensional structure of proteins as determined by 
crystallographic methods. At the time of its creation, only a dozen protein 
structures had been determined by a small community of protein crystal-
lographers who gathered at Cold Spring Harbor in 1971 for a symposium on 
the topic. Most of the researchers who had pioneered the determination 
of protein structures were present, including Max Perutz (hemoglobin), 
David Phillips (lysozyme), Frederic Richards (ribonuclease A), and William 
Lipscomb (carboxypeptidase A). Walter Hamilton, the young president of 
the American Crystallographic Association, aired the idea of a data bank for 
protein structures, a proposal made by two even younger colleagues, Helen 
Berman and Edgar Meyers. His colleagues responded very favorably to the 
idea, and the initial set of data was collected on the strength of friend-
ships among Hamilton and some of the crystallographers present at the 
 meeting.24

By May 1973, the data bank was “about ready to begin distribution” 
and a formal announcement was published in Acta Crystallographica and 
in the Journal of Molecular Biology.25 The Protein Data Bank contained the 
coordinates of just nine proteins and anyone could obtain the entire data 
bank on a magnetic tape for a modest sum, covering shipping and the cost 
of a blank tape. The announcement repeated the call made two years ear-
lier: the “usefulness of the system” would depend on “the response of the 
protein crystallographers supplying the data.”26 In the following months, 
researchers who determined structures began to acknowledge in their pub-
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lications that they had deposited the coordinates in the Protein Data Bank. 
The number of available structures grew, but slowly. In January 1974, there 
were just twelve structures available, a year later fifteen, and the following 
year twenty- three.27

Most authors, who had been friends of Hamilton, agreed to release the 
data. However, not all of them must have been entirely comfortable with 
their decision. One crystallographer, for example, authorized the release of 
his data, but asked that he be informed about who would access it.28 Others, 
such as Max F. Perutz, wished to hold back the data until it was further re-
fined.29 The Protein Data Bank managers tried to persuade him to release 
the data because “coordinates at any stage of refinement will be extremely 
interesting and very useful to many people,”30 and Perutz eventually agreed, 
but only after a year (and after having submitted another paper based on 
the further refinement of the same data).31

In order to encourage researchers to deposit their data, while recogniz-
ing their interest in keeping them private so they could exploit them fur-
ther, the managers of the Protein Data Bank, together with some journal 
editors, devised an original system in the early 1980s. Journal editors asked 
prospective authors that the data supporting the conclusions of their scien-
tific paper be submitted to the Protein Data Bank. To overcome proprietary 
resistance, the data bank managers offered researchers the option to deposit 
their data but to restrict its access to the public for up to four years after the 
publication of a paper based on the data. In 1989, more than 75 percent of 
those depositing data chose to keep it private for the maximum period of 
four years.32 Clearly, most of the community of crystallographers was not 
ready to make data communal property at the time of publication unless 
forced to do so.

To make matters worse, the very definition of what counted as data, 
especially “raw data,” was not universally agreed upon.33 Should only the 
atomic coordinates of the protein model be considered “raw data”? Or 
the “structure factors,” a set of calculated data from measured diffraction 
intensities, from which the atomic coordinates were derived? Or the in-
tensities of the diffraction spots measured on the diffraction images used 
to calculate the structure factors? Or the diffraction images themselves, 
produced directly by the x- rays going through a protein crystal? At first, 
the Protein Data Bank focused on the atomic coordinates that described 
with precision the position of each atom in a protein model. But these data 
were far from being “raw.” They were the result of many steps of measure-
ments, calculations, and interpretations. Without the structure factors, the 
proposed structure could not be challenged. Thus some crystallographers 
argued that coordinates were not data at all, but results derived from data. 
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As the American crystallographer Richard E. Dickerson put it in a letter to 
the president of the American Crystallographic Association, “Results with-
out data are unproven, and interpretations without results are hearsay.”34 
The Protein Data Bank managers therefore began to ask crystallographers to 
include structure factors along with atomic coordinates. But many research-
ers resisted, arguing that the structure factors should be considered research 
notes, not data, and thus felt no obligation to share them.

The situation was very similar among molecular geneticists who were 
facing their own data deluge in the same period. In 1983, the NIH funded 
the creation of a central database named GenBank for all DNA sequences.35 
Located at Los Alamos, its main architect, the physicist Walter Goad, had 
promised funding agencies that all the data published in the scientific lit-
erature would be included in GenBank “within a year” and all new data 
would be integrated as soon as they were published in journals.36 But three 
years later, only 19 percent of the sequences published the previous year 
were publicly available in GenBank.37 The gap between the data available 
in printed journals and in electronic databases was constantly growing. 
And there was an unknown amount of data that was neither published nor 
deposited in databases. Unlike the field of crystallography, much of the data 
associated with a published article was included in the scientific journals 
and thus publicly available. But printed DNA sequences (long strings of 
As, Ts, Gs, and Cs) were of little use for whoever wanted to analyze them 
with a computer. Worse, almost all the original published sequences were 
inaccurate (typographic errors were impossible to spot by a copy editor). 
Since researchers were eager to have correct sequences in electronic format 
available from a database like GenBank, managers of GenBank were faced 
with the daunting task of typing sequences manually from a journal into a 
computer, which was not only time consuming but also added its own set 
of errors.

As they were increasingly falling behind the growing amount of data 
available in the scientific literature, the managers of GenBank expected 
to enroll the community in the collecting effort. Like the managers of the 
Protein Data Bank, those of GenBank hoped that researchers would di-
rectly send their data in an electronic format to the database at the same 
time as they submitted a manuscript for publication in a journal— or at 
least that they would use the papers forms, sent out by journal editors, on 
which authors could carefully write down their DNA sequences and return 
it to GenBank. In numerous calls published in scientific journals, GenBank 
managers cajoled researchers to comply. They encouraged, threatened, 
persuaded, cheered, and appealed to moral obligations in order to change 
the behavior of experimentalists. Journal editors, who were swamped by  
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sequence data and preferred to have it deposited in GenBank rather than 
printed in their pages, echoed these calls. In Proceedings of the National 
Academy of Sciences, for example, an editorial reminded the readers that 
“scientists who generate sequences . . . are also the users of sequences . . . 
self- interest should . . . dictate compliance.”38 All to little avail. As the editor 
of Nucleic Acids Research remarked pointedly, “Scientists would like access to 
everyone else’s data through they do not necessarily wish to reciprocate.”39

There were many reasons for the researchers’ resistance to sharing data. 
Some simply felt that it was not worth the time needed to format and de-
posit the data in GenBank. Others were attempting to protect their data 
from potential competitors. Still others were concerned that it contained 
errors that could be spotted by others and tarnish their reputation. In the 
case of crystallographic data, researchers often wanted to “refine” the data 
further (a mathematical procedure), making it more precise, before they re-
leased it to the public. In practice, the basic principle that a publication re-
quires all the data upon which the conclusions rest be made public (in print 
or upon request) was honored only in the breach. As Dickerson put it in 
no uncertain terms, “By the standards normally applied in other branches 
of science [the structures published without available data] are not really 
published at all, in the literal sense of making the information public.”40

OPEN SCIENCE

The rise of open science in the last decade of the twentieth century was not 
the result of a spontaneous surge of altruism among researchers or a trans-
formation in the moral economy of experimental science. Data collectors, 
such as those working for GenBank and the Protein Data Bank, began to 
pursue a new strategy more in line with the existing moral economy of the 
experimental life sciences. For many years, they had hoped that the com-
munal ethos in science would allow them to collect data much as earlier 
natural history collectors had done. There, amateurs openly shared their 
“data,” in the form of specimens or observations, with, for example, col-
lectors affiliated with natural history museums or local naturalist societies. 
These amateurs received little, if any, credit for their contribution: at best, 
an acknowledgment in print or, exceptionally, a new species named after 
them. But in the experimental sciences, where professionals made a career 
(and a living) by turning data into credit, the naturalist system of data col-
lection was bound to fail.

In this respect, the end of the 1980s marked a turning point. The 
National Institutes of Health (NIH) were particularly sensitive to the availa-
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bility of data concerning genes or proteins related to diseases of great public 
concern, such as cancer or AIDS. In 1988, a group of researchers published a 
paper describing the structure of a protein from a cancer- causing gene, Ras. 
Two years later, the atomic coordinates describing the structure were still 
unavailable in the Protein Data Bank. When questioned about this omis-
sion, the article’s lead author argued that he still needed to resolve some 
problems with the structure before depositing the data. An NIH official was 
annoyed by this prevailing attitude: the “data are good enough so that con-
clusions that are drawn from them can be published but not good enough 
to see the light of the day.”41

To combat this problem, an NIH agency passed a resolution recom-
mending that all grantees make their crystallographic data available within 
one year of publication, and that funding be withheld from those who did 
not comply.42 Although this sanction sounded severe, it did not include 
any systematic enforcement measures. But it contributed, together with 
the growing pressure from professional societies, to the new system of data 
collection dependent on journal editors. By 1990, a number of them began 
to adopt policies mandating the sharing of crystallographic data with the 
Protein Data Bank. This proved far more effective.

This change in policy among journal editors resulted from the desper-
ate efforts of database managers to solve their data collection problem 
and those of journals to preserve their epistemic authority while avoiding 
the costs of publishing growing amounts of data. Journal editors not only 
adopted but enforced mandatory submission policies, simply by deciding 
to publish only papers by authors who complied. These policy changes were 
almost always initiated by editorial board members with close ties to the 
data banks and who understood that data sharing was in the best interest 
of the research community. The molecular biologist Richard J. Roberts, for 
example, on the advisory board of GenBank and executive editor of Nucleic 
Acids Research, introduced the policy for that journal in 1988.43 The prin-
ciple was very simple. Journal editors would publish a paper only if the 
authors could provide an “accession number” demonstrating that the sup-
porting data had been submitted to a public database, like GenBank or the 
EMBL data library, its European equivalent. Some journals, such as Nature, 
persisted in opposing any mandatory submission policy, and its editor- in- 
chief, John Maddox, encouraged other journals to resist “being turned into 
instruments of law- enforcement.”44 But Nature was becoming increasingly 
isolated. Authors also seemed to have some misgivings about having their 
data released too quickly, as almost 50 percent of those who submitted data 
to GenBank asked for confidentiality until their papers appeared in print.45 
Overall, the efforts of the EMBL and GenBank persuaded enough journals 
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to adopt submission policies, essentially solving the problem of data collec-
tion for sequence databases. These policies had an immediate and dramatic 
effect: in 1990, 75 percent of all data submitted to GenBank came directly 
from authors. By attaching the rewards (priority, credit, and authorship) 
that go with publishing in a journal to data deposition, the experimental 
sciences solved in their own way an old challenge of the sciences of the 
archives.

DATA PUBLICATION

The open science revolution was thus no revolution at all, in the sense of 
a profound transformation in the political and cultural values governing 
individual and collective behavior. The rise of open science resulted from a 
new alignment between individual and collective interests within the ex-
isting moral economy of science. Researchers began to share data because 
it became a requirement in order to publish papers and thus reap the as-
sociated credit. More recent attempts to encourage data sharing illustrate 
further the conservative nature of the open access transformation. The 
mandatory data sharing enforced by journal editors only concerned data 
that was used as evidence for claims made in a scientific paper. The vast 
majority of data produced was unaffected by this policy and remained in 
private laboratory notebooks and computers. Thus scientists and science 
administrators imagined two different models to tie data sharing to the 
existing reward system in science: data authorship and data citation.

In the last decades of the twentieth century, as the amount of data 
produced by scientists increased dramatically, printed journals began 
to exclude the possibility of publishing data alone. Only when data was 
used as supporting evidence for a broader claim could it be included in a 
scientific paper or deposited in a public database. The production of data 
alone was no longer considered an intellectual achievement that could be 
rewarded by granting scientific authorship. A few decades earlier, the situa-
tion had been very different. In the 1950s, the biochemist Frederick Sanger 
published a series of papers describing, for the first time, the sequence of a 
protein, insulin— a publication rewarded by the Nobel Prize in Physiology 
or Medicine in 1958. But by the end of the century, protein sequences, and 
even more so DNA sequences, were determined in numerous laboratories, 
often through automated methods, without necessarily being published. In 
order to encourage researchers to submit these data and make them public, 
database managers attempted to rely on the same incentive as journal 
editors: the granting of authorship. The Protein Data Bank, for example, 
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made it possible to cite “an entry without a published reference,” including 
the name(s) of the author(s), a descriptive title, and a Protein Data Bank 
unique identifier (or a Digital Object Identifier, DOI).46 A data entry could 
then be listed in an author’s publication list, along with articles published 
in scientific journals. Journal editors have responded to databases’ chal-
lenges to their exclusive rights to grant data authorship by launching new 
journals solely for the publication of data. Nature Publishing Group, for 
example, started Scientific Data, in 2014, for that purpose.47 Databases and 
data journals both grant authorship, thus allowing researchers to claim 
the professional rewards attached to publications. Although this model for 
data sharing rests on the traditional reward system in the sciences based 
on publication records, its impact is limited by the fact that the value at-
tributed to a publication depends on the reputation of the journal where it 
is published, a reputation that reflects how selective the peer- review process 
of the journal is perceived to be and various metrics of the journal’s influ-
ence.48 Although data deposition in a database or journal could be counted 
as a publication, its value in the scientific reward system thus remains low. 
So does the incentive to deposit data, limiting the impact of data author-
ship on data sharing.

An alternative model, based on data citations, was developed to over-
come the limitations of data authorship. Along with the publication re-
cord, the scientific reward system has been based on citation records. Since 
1964, the Science Citation Index, created by the American linguist Eugene 
Garfield, has tracked the number of times a given article is cited in the scien-
tific literature.49 This number is being used, in various combinations, as a 
way to measure quantitatively a scientist’s impact on a scientific field. Since 
2005, the number of citations is used to calculate the h- index, a measure-
ment of a scientist’s productivity and impact that has become a standard 
part of a scientist’s resumé and that is often required by science funding 
agencies and academic search committees. As quantitative measurements 
of citations became increasingly influential in shaping scientific careers, 
proponents of data sharing— including database managers, journal editors, 
and funding agencies— encouraged authors to cite individual data entries, 
including the name of the researchers who had deposited the data, as they 
would for published papers. In the 1960s, when the first databases in the life 
sciences were established, researchers resented the fact that the database as 
a whole was cited, instead of the paper where they had first published the 
data, thus depriving them of the credit associated with a scientific citation. 
This citation practice also discouraged data sharing with a public database 
since it “anonymized” its origins.50 Efforts by the Committee on Data for 
Science and Technology (CODATA), the US National Academy of Sciences, 
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and various other groups of scientists led to the publication of a Joint Dec-
laration of Data Citation Principles in 2013.51 It emphasized the importance 
of minimal standards for data citations. Just a few months earlier, the media 
multinational Thompson Reuters, which maintains the bibliographic re-
cord and citation index Web of Science, launched its Data Citation Index.52 
This new tool made it possible to measure how often a particular data set is 
cited in the scientific literature, thus encouraging data sharing, even when 
data is not associated with the publication of research findings.

CONSERVATIVE REVOLUTION

It is too early to say whether these initiatives will have a significant im-
pact on data sharing practices. But what seems historically significant is 
the degree to which they have retreated from the idealistic attempts of the 
1960s and 1970s to transform the moral economy of experimental science. 
Instead, they all rely on the existing reward system based on the granting of 
authorship by community- based journals (or databases) and the citations 
of published work by members of the scientific community. Thus scien-
tific journals, through their almost exclusive power to grant authorship, 
still hold the key to this reward system. Databases managers, after relying 
on journals to enforce mandatory data submission policies, began to chal-
lenge the exclusive rights of journals by arrogating to themselves the power 
to grant a form of authorship for data. The scholarly literature about the 
rise of open science has focused on the policies elaborated by governments 
and science funding agencies, overlooking the role of journal editors and 
database managers. In Reinventing Discovery, for example, Nielson claimed 
that “the granting agencies are the de facto governance mechanism in the 
republic of science, and have great power to compel change, more power 
even than superstar scientists such as Nobel prizewinners.”53 Others have 
described the “open science revolution” as essentially spontaneous, a revo-
lution “from below,” where individual researchers became committed to 
open science and shared data voluntarily in the best interest of the scientific 
community. This chapter argues that there was no revolution at all, or only 
a conservative one. The open science revolution might have changed how 
much data was made available publicly, a great collective benefit, but not 
the reason individual researchers shared data. By and large, researchers have 
shared data because it became in their own interest to do so, as defined by 
the existing reward system in the experimental sciences. Far from upsetting 
the current moral economy of science, the rise of open science illustrates 
how much it remained entrenched in current scientific practice. For this 
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reason, researchers have even suggested that the term “data sharing,” with 
its communitarian overtones, be abandoned and replaced by “data publica-
tion,” a term perfectly in line with the individualistic ethos prevalent in the 
experimental sciences.54

In short, the data deluge was a product of two different transformations. 
First, it represents an expansion of what falls under the category of “data.” 
Many research notes, preliminary measurements, and private observations 
did not count as data until the end of the twentieth century. The current 
data deluge is not simply the product of the increased amount of data being 
produced. It is also the result of the enlargement of what counts as data and 
thus merits preservation. The exact definition of “data,” however, remains 
a moving target for all those involved in data policies, such as the National 
Science Foundation. Although since 2011 the NSF has required a “data 
management plan” (DMP) from its grantees, nowhere did it provide a defi-
nition of what counts as data, expecting that norms would be developed by 
the different research communities.55 The NSF was treading lightly because 
labeling something as “data” created obligations to preserve it and make it 
publicly accessible. Second, the data deluge depended on the coupling of 
these obligations to the existing moral economy of the experimental life 
sciences. Data sharing became an obligation tied to gaining authorship and 
citations, the key components of the experimental sciences’ individualis-
tic reward system.56 By making individual and collective interests coincide, 
the proponents of “open science” engineered a “data deluge,” allowing the 
experimental science of the archives to flourish at the beginning of the 
twenty- first century.
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